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Pharmacokinetics is a study of how the 
plasma concentration of the drug changes within 
the body, which entails the time course of its ab-
sorption, distribution, metabolism, and excretion. 
Since drug movement is a complex process and so 
difficult to predict, the development of pharmaco-
kinetic models is necessary (Landersdorfer and 
Jusko, 2008). A basic type of model used in phar-
macokinetics is the compartmental model where 
the compartments represent a group of similar tis-
sues or fluids.  

In diabetes studies, a compartmental mod-
elling approach has been used to understand the 
dynamics of the disease especially within the 
framework of glucose-insulin system (Topp et al, 
2000). Though models of sufficient simplicity, i.e. 
minimal models, describing the observed glucose-
insulin dynamics have been developed as starters 
and have been extended to include other factors 
such as effect of drug use, the dynamics of the 
plasma concentration of an anti-diabetic agent are 
not clearly understood. For instance, an anti-
diabetic agent such as metformin is known to ex-

hibit glucose-lowering effect by decreasing hepatic 
glucose production, reducing the rate of intestinal 
glucose absorption, and increasing glucose uptake 
by peripheral tissues (Stepensky et al, 2000), yet 
the plasma concentration of metformin is partially 
investigated (Lee and Kwon, 2004). 

The primary aim of this study is to formu-
late simple pharmacokinetic models describing the 
dynamics of the plasma concentration of an anti-
diabetic agent, such as metformin, and compare 
these models to empirical data. Three models, in 
the form of ordinary differential equations (ODEs), 
are developed here with progressing complexity. 
The solutions of these ODE models are obtained 
analytically and used for curve fitting. Parameter 
estimates are obtained using nonlinear regression 
analysis. The performances of these models are 
compared in terms of how well they fit the empiri-
cal data using Akaike information criterion (AIC) 
(Akaike, 2011) since it is assumed that the candi-
date models are only approximations to the ob-
served metformin plasma concentration and AIC 
does not consider that any of the candidate models 
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being tested is the true model.  
The minimal models developed in this 

study can be used for diagnostic purposes in de-
scribing the effect of drugs. This study also serves 
as a guide to identify a reasonable model to begin 
with in developing new pharmacokinetic models 
for other anti-diabetic agents. Furthermore, the 
models can be extended to incorporate other factors 
affecting the dynamics of plasma concentration of 
an anti-diabetic agent. 

 
Materials and Methods 

 
Model description 

To begin, let  be the plasma concen-
tration of metformin in micrograms per milliliter 
(mg/ml) at time t hours. In a well-mixed system, 
the rate of change in the plasma concentration of 
metformin over time is governed by its rates of ab-
sorption and clearance in the blood and is specifi-
cally given by  

( )c t

sented as a step function. Hence, the ODE for the 
first model, i.e. Model 1, is 

Using this formula, three models are derived based 
on the assumptions made about the absorption rate 
of the drug in the blood. For simplicity, all models 
take the assumption that the clearance rate varies 
linearly with the plasma concentration of metfor-
min, where the clearance rate constant is denoted 
by d.  
 One of the challenges in developing the 
model equations associated to equation (1) is the 
construction of functional form for the absorption 
rate. Since a general functional form of the absorp-
tion rate is not known, the models must be formu-
lated according to crude assumptions that have not 
been tested experimentally. As first step, a simplis-
tic view of the absorption rate is considered where-
in the orally administered drug is assumed to be 

absorbed within the system at a constant rate  

for  hours ( < ), where  is the time peri-
od to observe the plasma concentration dynamics 

of the drug. Beyond  hours up to time , the 
drug has been fully absorbed and so its dynamics is 
only driven by its clearance rate. This mechanism 
implies that the absorption rate behaves in a switch
-like manner whose functional form can be repre-
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with initial plasma concentration .  
 As the first model is built on an assumption 
that the absorption rate is a switch-like function, it 
can be thought that the system does not necessarily 
respond this way. One way to modify Model 1 is 
by assuming that the absorbed drugs decrease ex-

ponentially over time  instead of put-
ting a time limit at which the system ceases to ab-
sorb the drug.  This point means that the absorption 
rate is assumed to be an exponentially decaying 
function – an assumption used to formulate the 
model equations for the second model. To model 
the absorption rate as an exponential decay, let 

 be the absorbed drug over t hours. Suppose 

that k is the decay rate for , then the ODEs 
for the second model (Model 2) are given by 
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where the initial value .  
 Finally, one can impose a more dynamic 
absorption rate by assuming that drugs absorbed 

build up at a rate  over time  then 

decay exponentially beyond . Mathematically, 

it can be seen that resembles the delta func-
tion. This assumption yields Model 3 whose equa-
tions are given by 

0(0) 0a a= 

ka − 0 



( )a t

(1) 

(2) 

(3) 

(4) 

and , i.e. no drugs are absorbed initially.  
In terms of model structure, Model 3 is 

clearly an augmented form of Model 2. Specifical-

(0) 0a =
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cording to the measurements of their goodness-of-
fit. Generally, the AIC is computed using the for-
mula: 

ly, the dynamic variable  in Model 3 is mod-
elled as piecewise ODEs, i.e. additional level of 

complexity, while  in Model 2 is just a simple 
ODE. In contrast with Model 1, Models 2 and 3 
have dynamic absorption rates. The third model is 
the most complex among the rest and includes
more parameters to be estimated, which has a con-
sequence in model ranking. 
Parameter estimation and nonlinear regression 
analysis 

Models 1 to 3, i.e. equations (2)-(4), dis-
play a set of parameters whose values are not 
known. For parameter estimation, the data points 
depicting the mean observed values (22 human 
subjects) of plasma concentration of metformin 
(500 mg oral administration) from an experimental 
study (Lee and Kwon, 20014) were extracted using 
a Java-written program (Tummers, 2006) (see Ta-
ble 1). 

Since the model parameters and dynamic 
variables are related in a nonlinear fashion, each 
model is fitted to the experimental data using a
least squares method (i.e. nonlinear regression 
analysis) (Bates and Watts, 1988). This procedure 
was implemented in MATLAB, a computer soft-
ware with curve fitting functionality. 
Akaike information criteria (AIC) 
The Akaike information criterion (AIC) is a tech-
nique that evaluates which of the models being 
compared performs best relative to each other ac-

( )a t

( )a t

Time (hours) 
Plasma concentration 

of metformin (µg/mL) 

0.5  0.45 

1.0  0.90 

1.5  1.08 

2.0  1.13 

2.5  1.14 

3.0  1.20 

4.0  1.11 

6.0  0.62 

8.0  0.37 

10.0  0.22 

12.0  0.12 

Table 1: Data of metformin plasma concentration over a 
time-period of 12 hours extracted from Lee and Kwon 
(2004). 

2 2 ln( )AIC k L= −

where k is the number of model parameters and L is 
the maximum likelihood for the estimated model8. 
As a rule, the best model yields the minimum AIC. 
Practically, the relative probability that the ith 
model minimizes the information loss is used, 
which is given by the expression 

exp AICmin − AICi( )/ 2( )

where  is the minimum AIC value among 
the AICs of the candidate models. If this probability 
is very small, then it implies that the ith model most 
likely loses information and so must be omitted 
(Burnham and Anderson, 2003). In this study, the

is used because of small sample size. For 

small data points, n, or large k, is strongly 
recommended (Burnham and Anderson, 2003). In 

fact, converges to AIC as n increases. Given 
a computed AIC using (1), the corrected AIC is giv-
en by 

AICmin

AICc
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AICc

( )2 1
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n k

+
= +

− −

To apply least squares model fitting, it is assumed 
here that the residuals associated to the candidate 
models are normally distributed, i.e. the variance in 
the likelihood function are identical. As a conse-
quence of this assumption, alternative form for AIC 
is used to substitute in (7). Here AIC is computed as 

( )ln / 2 ,AIC n RSS n k= +

where RSS is the residual sum of squares (Burnham 
and Anderson, 2003) whose formula is given by 

( )( )2

1

.
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In this study, represents the observed values for 
the plasma concentration of metformin and 

 is the metformin plasma concentration at 

iy

( )if x

(5) 

(6) 

(7) 

(8) 

(9) 
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time  hours predicted by the different models. 
 

Results and Discussion 
 

The analytic solutions of aforementioned 
ODE models were obtained using elementary tech-
niques for solving first-order differential equations, 
e.g. separation of variables or by the method of 
integrating factors (Nagle et al, 1989), and are dis-
played in Table 2. The method of Laplace Trans-
form can also be used to compute these analytic 
solutions. In Table 2, it can be noticed that  

, which was essentially derived from the 
observed amount of metformin plasma concentra-
tion for only one cycle in a period of 12 hours, is 
also shown in Table 1.  

The analytic form of each model was used 
in nonlinear regression analysis with the data pre-
sented in Table 1. The analysis yielded parameter 
estimates for each model as well as the correspond-
ing RSS. To compute the corrected AIC of each 

ix

0 12 =

model using (7), the RSS associated to each model 
was substituted to (8). The estimated parameters 

and computed of each model is summarized 
in Table 2. 

As seen in Table 2, the analytic solution of 
Model 1 is a linear combination of a constant and 

an exponential decay with rate , i.e. clearance 
rate, from 0 to 1.83 hours, which implies that met-
formin plasma concentration increases during this 
time duration. On the other hand, for time between 
1.83 and 12 hours, the analytic solution of Model 1 

depends on the term  and so it is expected that 
the metformin plasma concentration decreases ex-
ponentially over this period. Moreover, it is note-
worthy to mention that the left- and right-hand first 

derivatives of at are not equal. Hence, 

the graph of predicted by Model 1 must 

show a sharp peak at , which is indeed the case 
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k
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Table 2. The different analytic forms of metformin plasma concentration based on (2)-(4), their parameter estimates, and 

calculated using (7)-(8). 
AICc

a The units are given as follows: for , for , for and , and  for . 
Note that h here stands for hour. 

1 1g ml h − −  1g ml −
0a 1h−  k h 
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Model 1 Model 2 

Model 3 

Figure 1. The best fit curves (solid curves) of Models 1-3 and 11 data points (open squares) representing mean ob-
served values of metformin plasma concentration after oral administration of 500 mg tablet within 12 hours. 

as found in Figure 1.  
In contrast with Model 1, the analytic solu-

tion of Model 2 is a linear combination of two dif-
ferent exponentially decaying functions namely

and . Note that the metformin plasma 

concentration predicted by Model 2 is not a 
piecewise function. However, Model 2 analytic

solution depends on the difference between

and  with slightly different decay rates (

), which is not monotonic. As a matter of 

fact, setting the first derivative of to zero 

kte− te −

( )c t

kte−

te −

k 

( )c t

yields hours, and by the 
second derivative test, it is concluded that this is 

the time when is at maximum. Models 1 and 
2 have the same number of parameters to be esti-

mated, implying that the difference in their  
values is due to their differences in the RSS values. 

One can see from the  values that the RSS 
associated to Model 1 must be larger than that of 
Model 2. Therefore, Model 2 performs better than 

Model 1 in predicting with the given data 
set.  

The analytic solution of Model 3 as dis-

1
ln 2.46t

k k




 =  −  

( )c t

cAIC

cAIC

( )c t
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played in Table 2 is also a linear combination of 

the functions and as in Model 2. Howev-
er, it takes a more complicated form. Specifically, 

the in Model 3 is defined as a piecewise 
function and the coefficients of the exponential 
functions are long rational expressions in terms of 
all model parameters. Moreover, Model 3 has very 

small estimated values for the decay rates and 

, which mainly differs with those estimated de-
cay rates in Model 2. Furthermore, Model 3 has 
more parameters to estimate than the other models. 

As shown in Figure 1, the graph of predicted 
by Model 3 resembles that of Model 2, which is 
equivalent to stating that their RSS values are close 

to each other. Hence, it is not surprising that
values of Models 2 and 3 are very close to each 
other and the slight discrepancy can be explained 
by their differences in the number of parameters. 

Figure 1 show plots of the data and the best 
fit curves for plasma concentration of metformin 
over time. The data points are depicted in open 
squares and the solid curve is the analytic model 
substituted with the estimated parameters. The fig-
ure shows three panels corresponding to the least 
squares fitting of Model 1 (top panel), Model 2 
(middle panel), and Model 3 (bottom panel). 

The relative likelihood of each model can 

be computed using (6) with , i.e. 
the AIC for Model 2. Although it may be straight-
forward to see that Model 1 is not a good model 
from Figure 1, the relative likelihood computation 
additionally supports this claim. In particular, the

 value of Model 1 can be substituted to (6) 

to obtain , 
the relative likelihood of Model 1. This computed 
value means that Model 1 has a very small relative 
probability (about 10-5) of minimizing information 
loss and so can be neglected when deciding for 
good models to use in describing the pharmacoki-
netics dynamics of metformin.  

 
Conclusion 

 
Among the three formulated simple phar-

kte− te −

( )c t

k



( )c t

cAIC

min 64.6AIC = −

cAIC

( )( ) 5exp 64.6 46 / 2 9.14 10−− +  

macokinetic models, the best fitted model is Model 
2, which takes into consideration a (decaying) ex-
ponential rate of absorption for the drug. The mod-
el consists of three parameters to be estimated, 
namely, the initial absorption rate, the decay rate of 
absorption, and the clearance rate, which can be 
used for further analysis, for instance, extending 
the model for multiple dosage cases or including 
the model to see its effect in a glucose-insulin mod-
el for diabetes. 

Now that a best fit yet a simple model for 
the plasma concentration of metformin is known, 
this study proposes that the same model should be 
fit to see if the dynamics of other anti-diabetic 
agents is comparable with that of metformin. Anti-
diabetic agents, such as glimepiride (Niemi et al, 
2000), gliclazide (Park et al, 2003), repaglinide 
(Hatorp, 1999), etc., have known plasma concen-
tration profile and by applying the same method of 
comparison that was demonstrated here, it is possi-
ble to obtain a different set of estimated parame-
ters. Subsequently, a comparison between anti-
diabetic agents in terms of their pharmacokinetic 
dynamics become feasible.  

Finally, it is possible for these three models 
to yield different sets of AIC values when fitted to 
temporal data of plasma concentration for other 
anti-diabetic agents leading to changes in model 
preference. This study sets the stage to answer 
questions such as: which pharmacokinetic model is 
appropriate for this anti-diabetic agent? The re-
searcher can use the method of analysis and com-
parison presented here as first steps in addressing 
such a question. 
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